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1. INTRODUCTION

When R denotes the real line, the Fourier transform ff is defined on VCR)
by

(fff)(y) = f' f(x) e- i "," dx,
-00

y 00.

A simple consequence of the definition is that ff is a bounded linear
operator from VCR) into Loo(R). Lying a little deeper is the theorem of
Plancherel [8, p. 26] which asserts that ff has a linear extension to all of
VCR) which maps VCR) isometrically onto itself. To complete the picture,
at least for Lebesgue spaces, there is the theorem of Hausdorff and Young
[9, p. 101] which describes the behavior of ff on the intermediate spaces
U(R), 1 <p < 2.

THEOREM ]. ] (Hausdorff-Young). Suppose 1 < p < 2 and let p' be
the conjugate exponent to p, i.e., p-I --1- (p')-I = 1. Then .F" is a bounded
linear operator from LP(R) into LP'(R).

When 1 < P < 00, 1 < q < 00, the Lorentz space Ll'Q(R) consists of
those measurable functionsJ on R for which the norm

ilJllpq = lr' [tI/Pf**(t)]q dtJt("

is finite. Here, f** denotes the integral average f**(t) = t-I I~f*(s) ds of
the decreasing rearrangement f * of f. The next theorem is essentially due
to Hardy and Littlewood [9, p. 128].
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THEOREM 1.2 (Hardy-Littlewood). If I <: P <: 2 and p' is conjugate to p.
then .'¥' is a bounded operator from LP(R) into [1"P(R).

Since p < p' we have V"P(R) c: V"J"(R) ~~ V"(R) so Theorem 1.2
constitutes a sharpening of Theorem 1.1. More generally, the action of :;;
on any Lorentz space V"J is described by the interpolation theorem of
Calderon [5].

THEOREM 1.3 (Calderon). If 1 <: P <: 2, 1 ~ q 00, and p' is conjugate
to p, then:;; is a bounded linear operator from LPQ(R) into LP'q(R).

We shall prove the following Hausdorff-Young-type theorem for rearrange­
ment-invariant (r.i.) spaces.

THEOREM 1.4. Let L"(R) be a r.i. space whose indices (~, ex) satisfy
t <: ~ ~ ex <: 1. Then the functional fl defined by

is a r.i. norm on R whose indices (~, &) are conjugate to those offL, i.e.,

eX + ~ = ~ &= I.

(1.1)

(1.2)

Furthermore, the Fourier trans(orrn is a bounded linear operator from L"(R)
into LA(R).

It is a simple matter to check that our result contains Theorem 1.3 as a
special case.

There are analogs of Theorem 1.4 for the Fourier transform defined on
other locally compact abelian groups (cf. Section 3); in particular, for the
Fourier transform defined on the circle group T by

I .2w.. .
Cn = (:;;1)(n) = - J j(e<t) e-- mt dt,

271' 0
11 = 0, ±I, ±2,... ,fE U(T).

The following estimate was established by Hardy and Littlewood [6]
for the Fourier coefficients of functions f of class L(log+ L), i.e., functions
f on T for which If Ilog+ If I is integrable.

THEOREM 1.5 (Hardy-Littlewood). IffE L(log+ L), then L:~l n-1cn * <: 00.

This result is not a consequence of Theorem 1.4 (or, more precisely, of
its analog for the circle) since the indices of the space L(log+ L) are both
equal to I. However, using related techniques we can derive an extension for
the classes L(log+ L)q, q > 0. Furthermore, using Theorem 1.4 directly, we
can prove analogous results for the spaces LP(log+ LF when I < P < 2.
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THEOREM 1.6.

(a) IffE L(log+ L)I/, q > 0, then L:~2 n-Icn *(log n)q-l < 00.

(b) lifE U(log'c L)'l, 1 < p < 2, q ;? 0, then L~~l nJJ- 2c;; JJ(log n)1/ < 00.

Note that when q = 1, part (a) yields Theorem 1.5, and when q = 0,
part (b) reduces to the situation in Theorem 1.2.

Our method of proof for these results is interpolation-theoretic. In
particular, we use the (p; k) interpolation methods introduced in Part I of
this paper [3] and the weak-interpolation theory developed in Part II [4]. We
begin with a brief summary.

2. THE (p; k) INTERPOLATION METHODS

For an arbitrary compatible couple (Xl' X2) of Banach spaces we denote
by XI O the closure of Xl n X 2 in Xl. Whenever fE Xlo +- X2 , Peetre's
K-functional

tends to zero with t. It therefore has a representation

.t

K(t;f) = I k(s;f) ds,
'0

0< t < 00, (2.2)

where s ---+ k(s;j) is nonnegative, nonincreasing and right-continuous on
(0, (0) [3, Section 5].

To each r.i. norm p on (0, (0) there corresponds a Banach space
(Xl' X2)p;k consisting of those elements f in Xlo +- X2 for which the norm
lif:lp;lc = p(k(t;j» is finite. The spaces so constructed are intermediate
between Xl and X 2 , i.e.,

and share the following interpolation property [3, Theorem 5.3].

THEOREM 2.1. Let (Xl' X 2) and (YI , Y2) be compatible couples and let
T: Xl + X 2 ---+ YI +- Y2 be a linear operator which is boundedfrom Xi into Yi ,
i == 1,2. Then for any r.i. norm p on (0, (0), T is bounded from (XL' X 2)p;1c
into (YI , Y2)p;Ic'

In a similar manner, the space (Xl' X2)p;K consists of those.f in Xl +- X2

for which the norm IJllp;K = p(t-IK(t;j» is finite. It is an intermediate
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space of Xl and X2 if the upper index of p satisfies CXp < 1 [3, Corollary 8.8],
and there is the following "equivalence theorem" for the spaces generated
by the (p; k) and (p; K) methods [3, Theorem 9.3].

LEMMA 2.2. If the indices of p satisfy °< 13 (): < I, then (Xl' X2)p;k ~c

(Xl' X2)p;K , with equivalent norms.

3. THE HAUSDORFF-YOUNG THEOREM

From the discussion in Section I we have that the Fourier transform is a
bounded linear operator:

ff: VCR) -+ veeR); J: VCR) -+ VCR).

The action oUF on the intermediate spaces (V(R), V(R»p;k is then described
by Theorem 2.1 as follows.

THEOREM 3.1. Let p be any r.i. norm on (0, OCJ). Then the Fourier transform
g; is a bounded linear operator:

/;;:: (V(R), V(R»p;k -+ (LOO(R), V(R»p;1c . (3.1)

Our plan is to characterize the spaces appearing in (3.1) by means of the
weak-interpolation theory developed in [4].

LEMMA 3.2 [4, Theorem 3.5; 3, Theorem 10.2]. Let L"(R) be a r.i. space
whose indices satisfy .~ < 13" < cx" < I, and define p on (0, (0) by

p(f(t» = p.,(t-l/2j**(t1/2».

Then p is a r.i. norm on (0, OCJ), with indices given by

(3.2)

131' = 213" - I; X" 2ex" - 1, (3.3)

such that U(R) == (V(R), V(R»,,;/c , with equivalent norms.

LEMMA 3.3 [4, Theorem 3.5; 3, Theorem 10.1]. Let a be a r.i. norm on
(0, (0) whose indices satisfy°< 130 < cx" < I, and define v on R by

v(f(t» =oc v(f *(t» = a(f *(t2».

Then v is a r.i. norm on R, with indices given by

such that (V(R), U"(R)L;7. = L"(R), with equivalent norms.

(3.4)

(3.5)
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Proofof Theorem 1.4. Let U'(R) be a r.i. space whose indices satisfy
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(3.6)

Then by Lemma 3.2, there is a r.i. norm p on (0, (0) (defined by (3.2», with
indices given by (3.3), such that D'(R) = (LI(R), V(R»,,;k . By Theorem 3.1
we see that :F is a bounded linear operator:

'F: U(R) -* (LX!(R), V(R»p;l" (3.7)

so if we denote this last space by Lr., we have that :F is bounded from L"
into Lr. as desired. It remains therefore to show that j1 is a r.i. norm given
by (Ll) and whose indices satisfy (1.2).

The first step is to invert the order of the spaces L wand V in (3.7). An
inspection of (3.3) and (3.6) reveals that the indices of p lie strictly between°and 1. Hence, by Lemma 2.2, the (p; k) and (p; K) methods are equivalent,
i.e .. Lr. = (Lw(R), V(R»p;K .

It follows directly from (2.1) that

K(t;f; LW(R), VCR»~ = tK(t-I;f; VCR), U)(R»,

Thus, if a is defined over (0, (0) by

a(j(t» = a(j*(t» = p(t-1f**(t-l»,

a simple computation using (2.2) shows that

°< t < 00.

(3.8)

Furthermore, it can be checked directly from (3.8) that a is a r.i. norm on
(0, (0) whose indices are conjugate to those of p. Hence, by (3.3)

f3a = 1 - (X" c= 2(1 - cx,,); (Xa = I - f3p = 2(1 - f3,,). (3.10)

We next use Lemma 3.3 to find a r.i. norm v (defined by (3.4», with
indices given by (3.5), such that (using (3.9»

Lr.(R) = (V(R), LW(R»a;k = LV(R).

Thus j1 is equivalent to v and so has the same indices. But by (3.5) and
(3.10), the indices of v are given by

Hence, the indices of (l are conjugate to those of p.o.
Finally, we note that the indices of all the norms involved are strictly

between °and 1. Hence, as in the proof of [3, Theorem 10.2], we can replace
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f** by f* in the definitions (3.2) and (3.8) to obtain equivalent quasinorms.
But then from (3.2), (3.4) and (3.8) we find that

fl(f(t» ""' v(f(t» ""' fL(t'lf*(t I ». (3.11)

The functional on the right may fail to satisfy the triangle inequality so we
replace f * by f ** to obtain the desired representation (1.1) for fl. This
completes the proof.

Remarks.

(i) A somewhat weaker version of Theorem 1.4 was obtained
previously by the author in [2].

(ii) There are analogs of Theorem 1.4 for the Fourier transform defined
on locally compact abelian groups G (cf. [8]) whose Haar measure is a-finite.
In this case, the identity (1. I) needs slight but obvious modification (cf.
Section 4 where we apply it for the circle group).

4. THE SPACES DJ(log+ L)fJ

For spaces with indices equal to I, the arguments used in the last section
fail. However, in certain cases we can appeal directly to Theorem 3.1. To
illustrate our technique we consider the r.i. spaces 21"1 D'(logi L)q,
I p < 2, 0 < q < 00. For these values of p and q, 2l'fJ is an Orlicz space
whose indices are both equal to r i

. The next lemma shows that 2 M is also
a Lorentz space. The proof is elementary and can be found in [1].

LEMMA 4.1. Let f be an integrable fimction on Jhe circle and suppose
p < 2, q O. Then the following assertions are equivalent.

(i) fE2l"1;

(ii) _1 f 2rr I f(x)iJ' (Iog+ f(x)I)" dx 00 ;
21T 0

.1

(iii) I f"'(t)J' (log+f*(t»" dt < 00;
'II

(iv) Cf*(tP (log Ilt)'1 dt 00.
'0

If, in addition, we have p =' I and q 0, then each of the above is
equivalent to

.1

(v) J f**(t)(log Ilt)H dt 00,
o
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It follows from the lemma that the functional
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(4.1)

defines an equivalent norm on ZM under which zpq becomes a Lorentz space.
We first deal with the case 1 < p < 2, since then Theorem 1.4 applies

directly.

THEOREM 4.2. Suppose 1 < p < 2 and q ~ O. Iff E zpq, then

00

I nP -
2c: 1I(log n)'l < 00,

n~l

(4.2)

where {cn *} is the decreasing rearrangement of the sequence {cn} of Fourier
coefficients off

Proof The correct interpretation of (Ll) is as follows. If f E zpq and
{cn} is its sequence of Fourier coefficients we set

get) = Cn *, n - 1 :cO:; t < n, n = 1,2,.... (4.3)

Then by (4.1)

If 1
l/p

t1({cnD =c t1({cn *}) = fL(t-lg**(t- l») = 1 0 [t-lg**(t-l)]P (log Ilt)'l dtl .

But by (4.3)

r[t-lg**(t-l)]P (log 1lt)q dt= f 00 [tg**(t)]P (log t)q dt/t 2

o 1re

t p - 2g*(t)p (log t)'l dt
1

I c: J'nP- 2(log(n - 1))'1.
n~2

Hence, since iF" is a bounded operator from L" into LA we have

00

I C: Pn1,-2 (log(n - 1»)'1 :S. t1({CrJ)11 :c;; cfL(f)J' < 00,
n=2

from which the desired conclusion (4.2) follows.

THEOREM 4.3. If fE Zlq = L(log+L)", q > 0, then

I n-1Cn * (log n)'1-1 < 00.
n=2
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Proof Fix q > 0 and define the r.i. norm pan (0, (0) by

.1

p(t:p) = J (log l/t)H t:p**(t) dt.
o

(4.4)

The Fourier transform maps V isometrically onto [2 but it will be more
convenient to work with the weaker hypothesis fF: VI ---+ [200. In this case
the interpolation theorem (Theorem 2.1) shows that ,'IF is a bounded linear
operator:

(4.5)

We first show that (U, VI )p;k is precisely the space Zlq up to equivalence
of norms. For this we use Holmstedt's characterization [7] of the K-functional
K(t;f; V, VI):

K(t;!) "-' t f.~~ SI/2f**(s) ds/s, 0 < t < 00.
t"

Combining (2.2), (4.4) and the last estimate, we have for anyfE (V, Vl)p;k ,

Ilfl!n;7' = p(k(t;!)) = ((log l/t)H t-lK(t;!) dt
o

"-' Jl (log l/t)H dt j'7) Sl/2f**(s) ds/s.
o t 2

Interchanging the order of integration and remembering thatf * is supported
on [0, I] we find that

1
-1

i.np;, r--' (log l/s)Hf**(s) cis,
• 0

so Lemma 4.1 yields the equivalence ZV1 "-' (U, V l )p;,.

Next, we turn to the space We, [200)0;1. • In this case, Holmstedt's theorem [7]
gIves

t-1K(t; g; [00, [200) ."-' sup s-1/2K(s; g; [00, fl)
S~12

=c= sup S-1/2g**(S-1) == sup Sl/2g**(S).
s~:c.~t2 ,\'·,~:r-2

Hence, the norm of any function g E (lao, [200)0;' satisfies

g c== p(k(t; g)) "-' rl

(log 1/t),,-1 sup [sli2g**(s)] dt
• 0 s,<~~t-2

c= Ct-2 (log t)"-J sup [SI/2g**(S)] dt.
·1 s<t 2
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The last integral has lower bound

JX! t-2(log t)H tg**(t2) dt ~ f' t- I (log t)H g*(t2) dt
1 1

= 2-q JX! (log t)Q-1 g*(t) dtlt,
1

from which it follows easily that
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L n-I (log n)H g*(n) < 00,
n~I

(4.6)

Hence, if f EO ZIq = (U, VI)p;k' then by (4.5) its sequence {en}
of Fourier coefficients lies in (100, /2a)p;k so from (4.6) we deduce that
L~~I n-Icn *(Iog n)q-I < 00. This completes the proof.
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